cluster analysis

A form of multivariate analysis , of which the purpose is to divide a set of objects (such as variables or individuals), characterized by a number of attributes, into a set of clusters or classes, in such a way that the objects in a class are maximally similar to each other and maximally different to the other objects, with reference to a selected list of descriptive indicators and characteristics which form the basis of the analysis. In biology the technique is known as numerical taxonomy.
Cluster analysis was among the multivariate statistical techniques developed by (Social Area Analysis, 1955) for analysing census data. It is applied to census small-area statistics and social indicators in social area analysis to create area typologies, either focusing on particular urban or metropolitan areas, or covering the country as a whole. Cluster analysis found a wide range of applications in other areas, including developmental work with opinion statements or questions from which an attitude scale will be formed; exploratory work to identify underlying patterns in large data-sets; analytical work to measure significant similarities and differences between individuals, social groups, companies, or other types of organization, nation-states, types of event, and so forth; and the development of classifications and typologies.
Different ways of defining similarity and difference give rise to distinct methods of clustering. Alternative ways of determining how well the solution fits the data will generally give rise to somewhat disparate results. Most classification procedures begin with a table of association of dis/similarity coefficients between each pair of objects and then proceed in one of two ways-bottom up (where the objects are successively merged into larger clusters) or top down (where the entire set of objects is divided into increasingly small clusters). These yield as a solution a hierarchical clustering scheme (HCS), which is represented by a dendogram, or tree. An HCS is also often represented as a set of contours within a multi-dimensional scaling solution of the same data. The most common clustering method is stepwise hierarchical clustering with output displayed in a dendogram figure, which clearly identifies any outlier cases that remain separate from other cases until the final stage of the clustering process when all cases are combined in a single group, with three or more intermediate levels of aggregation.
Recent developments in this field include additive overlapping clustering (where each cluster has a measure of its importance), additive trees (where the length of the path between points represents the data dissimilarity), and rectangular clustering (where both the individuals and the variables of the data are clustered jointly).

Dictionary of sociology. 2013.

Look at other dictionaries:

  • Cluster analysis — The result of a cluster analysis shown as the coloring of the squares into three clusters. Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more… …   Wikipedia

  • Cluster analysis — A statistical technique that identifies clusters of stocks whose returns are highly correlated within each cluster and relatively uncorrelated between clusters. Cluster analysis has identified groupings such as growth, cyclical, stable and energy …   Financial and business terms

  • cluster analysis — A statistical technique that identifies clusters of stocks whose returns are highly correlated within each cluster and relatively uncorrelated across clusters. Cluster analysis has identified groupings such as growth (growth stocks), cyclical (… …   Financial and business terms

  • Cluster Analysis — An investment approach that places securities into groups based on the correlation found among their returns. Securities with high positive correlations are grouped together and segregated from those with negative correlation. Between each… …   Investment dictionary

  • cluster analysis — Gen Mgt a statistical method used to analyze complex data and identify groupings that share common features. Cluster analysis is a form of multivariate analysis that attempts to explain variability in a set of data. It involves finding unifying… …   The ultimate business dictionary

  • cluster analysis — noun Date: 1948 a statistical classification technique for discovering whether the individuals of a population fall into different groups by making quantitative comparisons of multiple characteristics …   New Collegiate Dictionary

  • cluster analysis — a method of grouping taxa on the basis of similarity or distance …   Dictionary of ichthyology

  • cluster analysis — noun The classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait often proximity according to some defined… …   Wiktionary

  • cluster analysis — in epidemiology, statistical techniques used to analyze observations that are clustered in subgroups …   Medical dictionary

  • cluster analysis — / klʌstər əˌnæləsɪs/ noun a method whereby samples are classified into groups according to characteristics …   Marketing dictionary in english

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.